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   مونت آارلو    ةالمحاآاة بطريق تحسين و إ ستنتاج المعاملات البتروفيزيائية للخزانات بإ ستخدام
  و تحليل التغير الإحتمالي

 
لك الإحتمالي و يستند أساسا إلي أسس جيولوجية و ذ              ليل التغير حتهتم هذه الدراسة بإ ستخدام نموذج يعتمد علي المحاآاة بالمونت آارلو وت                 :  الخلاصـــــة

 من دوال الكثافة     ة مختلفة هذا ويعتمد تحليل التغير الإحتمالي علي مجموع         .  لخزانات الحاملة للهيدروآربونات   لخواص البتروفيزيائية    اللإستنتاج    لتحسين و 
  . متعددة المتغيراتةتحليلات الإحصائي ومعامل المضاهاة والتباين والتباين المشترك لبيانات تسجيلات الآبار المستخدمة في الدراسة بالاضافه إلي الةالإحتمالي

ثم بعد ذلك تم إجراء      .  و ذلك للإرشاد والتحكم في نموذج المحاآاة       )  ةشروط ثابتة و أخري مرن     ( قبل البدء في نظام المحاآاة تم إستخدام نوعين من الشروط              
هذا وقد تم    .  لبتروفيزيائية الضرورية لدراسة وتقييم الخزان       مره لكل مستوي في الخزان و ذلك لحساب الخواص ا                100المحاآاة و ذلك بتكرار المحاولة         

 تم تطبيق   بحرية دلتا النيل ال   شمال شرق   ةمنطق  ففي).   وحقل رأس فنار   بحرية دلتا النيل ال   ة شمال شرق  منطق(تطبيق نموذج المحاآاة علي منطقتين مختلفتين        
 ة بعض الطرق الإحصائية لتقليل الأخطاء الناتجة في التفسيرات نظرا لعدم دقآذلكملة للغاز و للطبقات الحاةالنموذج لتحسين المعاملات البتروفيزيائية المقاس

آما تم . المستخدمة في قياس بعض التسجيلات الكهربية مثل تسجيل إشعاع جاما و المسامية الظاهرية المحسوبة من تسجيل النيترون الثنائي علي سبيل المثال     
مونت آارلو لحساب مختلف المعاملات اللازمة لتقييم الخزان وخاصة معاملات الطفلة وآذلك للتنبوء بالبارامترات                                 العديد من توزيعات ال         ستخدام  إ

 حقل رأس فنار تم إ ستخدام نموذج المحاآاة لحل               ةأما في منطق   .  جيولوجي فيها -البتروفيزيائية للآبار في المناطق التي تم التحقق من شرط الجوار التوبو                
 تخطي الحلقة من أبرز المشاآل في حقل رأس فنار المتعلقة بالخواص الصوتية لخزان النلليبور               ةوتعد مشكل .  حلقة الخاصة بالتسجيل الصوتي    تخطي ال  ةمشكل

تخدام الطرق   و تمثيلا لخواص الخزان من تلك المستنتجة بإ س             ةوقد وجد أن البارامترات البتروفيزيائية المستنتجة بإ ستخدام المحاآاة أآثر دق               .  الكربوناتي
 في المناطق الشبيهة ذات المعلومات القليلة أو قليلة الجودة و آذلك في المناطق                   ةن هذا النموذج يمكن تطبيق     أو لذا يمكننا القول ب     .  التقليدية لتسجيلات الآبار  

الأجزاء المفقودة لتسجيلات بعض الآبار وآذلك        الجديدة و ذلك للحصول علي أمثل تفسير للبيانات المتاحة آما يمكن إستخدام هذا النموذج لإستنتاج بعض                         
    . الجديدةةلإستكشافياللتنبؤ بالمعاملات البتروفيزيائية للآبار 

ABSTRACT: In this study, Monte Carlo simulation and stochastic modelling analyses, in combination with 
geological-based concepts, are used to improve and predict the petrophysical parameters of the hydrocarbon-bearing 
reservoirs. The stochastic input is supplied in the form of probability density functions, correlation, and variance-
covariance coefficients as determined from actual well logging data. The multivariate statistical analyses are used to 
produce correlated multivariate stochastic variables. Before going on the simulation model, two types of constraints 
(hard constraints and simulation constraints) are used to guide and control the simulation procedure. Monte Carlo 
simulation algorithm is then performed by running a 100 times iteration in front of each depth increment using 
correlated multivariate variables.  
The present simulation model is applied in two different case studies (Northeastern offshore Nile Delta and Ras Fanar 
field). In the offshore Nile Delta, the model is applied to improve the petrophysical parameters of the gas-bearing 
reservoirs. All logging data are simulated so as to, the uncertainty in the interpretations due to some errors like that in 
the statistics of gamma ray counting and in the estimation of apparent porosity from dual neutron log, are greatly 
reduced. Different Monte Carlo-based distributions are used to derive the different parameters necessary for reservoir 
evaluation especially those of shale. The model is used also to predict the petrophysical parameters of wells providing 
that a satisfactory topological/geological neighbourhood hard constraint is well developed in the area. In Ras Fanar 
field, the simulation algorithm is used to solve the cycle skipping problem which is another important and common 
problem concerning with sonic log due to the characteristic acoustic properties of the Nullipore carbonate reservoir. 
The simulated petrophysical parameters are found to be more realistic and representative for the actual petrophysical 
parameters of the reservoirs than those estimated using conventional logging analyses. So, this simulation model can be 
used not only as enhancement procedure in similar areas where the information is scarce or of bad quality and even in 
new areas to secure optimum use of the available data, but also as a predictive tool to predict the missed sections of 
logs and/ or to predict the petrophysical parameters of a new exploratory well. 
 

1. INTRODUCTION 

Computer simulation using Monte Carlo methods 
provides a powerful tool for the analysis of the 
parameters used in the volumetric studies, which is not  
possible using the traditional analytical approaches.  

 
The origin of the modern Monte Carlo methods stems 
from work on the atomic bomb during the second world 
war when they were mainly used for numerical 
simulation of the neutron diffusion in fissile material, 
which is a probabilistic problem. Later on, it was 
realized that Monte Carlo methods could also be used 



for deterministic problems (Sambridge and Mosegaard, 
2002).  
 

Monte Carlo is a random sampling method and 
requires a large sampling number N for accurate 
estimation. The algorithm relates and controls the 
uncertainty distributions of the individual parameters by 
a random number function (between 0 and 1) which 
performs numerous random iterations for each 
distribution. So, Monte Carlo simulation is used to solve 
certain stochastic (involving a random variable) 
problems where the passage of time plays no 
substantive role. Nowadays, it is widely used to solve 
certain statistical problems that are not analytically 
tractable. In geo-scientific applications, the method is 
used in many aspects such as reserve estimation and for 
prospect evaluation (de Groot et al. 1996). 

 
Many authors dealt with applying the 

geostatistical stochastic modelling and simulation 
techniques in solving certain geological and 
petrophysical problems, of them the following are the 
most important; Bartlett (1966); Rubinstein (1981); 
Haldorsen and Chang (1986); Isaaks and Srivastava 
(1989); Strauss and Sadler (1989); Alabert and 
Massonnat (1990); Haldorsen and Damsleth (1990); 
Fogg et al. (1991); Law and Kelton (1991); Bortoli, et 
al. (1993); de Groot et al. (1993 and 1996); Molz and 
Boman (1993), Deutsch (2002), Pyrcz and Deutsch 
(2003); Pyrcz et al. (2005), ....etc. 

 
2. MONTE CARLO SIMULATION AND 
RESERVOIR PARAMETERS 

In conventional logging analyses, there are many 
difficulties concerning accurate estimation of the 
petrophysical properties of the reservoir of interest. In 
many cases, the anticipated outcomes depend on several 
input variables whose values may not be known exactly. 
Although, majority of logging data have to be corrected 
before going in the interpretations, still some 
uncertainties in the final calculations may arise. This 
can be argued in many cases to the methods by which 
some logs, especially the old ones, are recorded and 
finally presented. The mathematical procedure used in 
counting and presenting the gamma ray log and neutron 
porosity (far/near ratio) and the average method 
followed in calculating the interval transit time in case 
of the compensated sonic log, are two examples of the 
expected uncertainties which could further influence the 
final interpretations. 
 

Another common problem, which if not treated 
carefully, may cause cumulative error in the 
calculations, is the choice of some important parameters 
like; the shale and matrix ones. As the complexity of the 
system to be interpreted increases, the conventional 
quantitative techniques used for reservoir analysis 

become more and more unsuitable and uncertain. To 
deal with these problems, the actual well logging data 
can be analyzed by a stochastic simulation method, such 
as Monte Carlo simulation to improve the estimation of 
the properties of the reservoir of interest. The inputs are 
probability distributions, and the output of such 
stochastic methods is also given in terms of 
distributions. 

 
2.1 Uncertainty in Logging Data 

As mentioned earlier, there are many reasons for 
the uncertainty in logging measurements. Most of the 
expected errors are argued to the statistical methods 
which are followed while counting and converting 
certain logging data from form to another. The 
following are some examples of these errors:  
 
Error Propagation in the Statistics of GR 
Counting (CPS to API) 
 

The natural gamma ray can be run in both open 
and cased holes, either empty or fluid-filled. This log 
may be recorded in API units or counts per second, 
CPS. The nature of gamma ray emission is statistical 
and must be averaged over time (Hearst and Nelson, 
1985). The detector stability and the length of time 
required to obtain a stable count rate depend upon the 
radioactivity of the target and efficiency of the detector. 
The primary calibration standard of gamma ray tools is 
the API units. So, when measured in CPS units, the 
gamma ray logs must be calibrated and converted to the 
API units. 

 
Different statistical and probability distribution 

functions are used to model and calibrate the measured 
CPS radioactive count rate in a given time window (t). 
The most important parameter which affects the 
measurement, is the count rate error. Using the rules of 
propagation of error, the count rate error can be 
estimated as follows:  

X Xσ = ………………………….….………..(1) 

      n X
t t

rσ = = ……………………….…………(2) 

     
2

200*G
r

σσ ∆
=

∆
…………………...……………….(3) 

     API*Av
2

Xσ σσ = ………………….……...……..(4) 

where:  
 X      is the number of counts per time window (t), 
σX     is the standard deviation, 
σr       is the count rate error,           
  t       is the time windows (t), 
σG     is the calibration gain standard deviation, 
σAv   is the count rate error standard deviation. 



Taking the count rate error in consideration, the raw 
gamma ray count rate in CPS can be converted and 
calibrated to API units as follows: 

 

( ) (
r

API CPS
200GR  = GR
∆

) …………………...……….(5) 

GR fin  (API) = GR  (API) - σ Av ……………..……..(6) 
 

where: 
GR (CPS)  is the gamma ray in count per second, 
GR (API)  is the gamma ray in API units, 
   ∆r         is the count rate difference. 

 
The previous statistical calibration is so complicated 
and in many cases leads to an expected effective error in 
the raw values of the converted API gamma ray units. 
So all conventional well log analyses which make use of 
gamma ray log will have some uncertainties and cause 
some errors in the final results, the effect which could 
be eliminated if a suitable Monte Carlo distribution is 
used instead. It is worth to mention here, that some 
environmental corrections of gamma ray log such as 
correction of gamma ray log for bore hole condition and 
mud barite (GR-1 and GR-2 charts, Schlumberger 
Charts 1991) are based mainly on the Monte Carlo 
simulation technique. 

 
NPHI Porosity Estimation Form Dual Neutron  
(Ratio-to-Porosity Transform) 

Porosity is one of the most important 
petrophysical properties, which must be carefully 
determined for good evaluation and assessment of the 
reservoir of interest. Many logging tools are used for 
accurate porosity estimation, among them is the dual 
neutron tool which is considered one of the most recent 
and important tools. It employs a chemical source of 
neutrons and two thermal neutron detectors. The actual 
measurement consists of the calibrated ratio of the far-
detector to near-detector count rates (Mod-8 ratio to 
porosity transform).  

 
The far/near count ratio is related to the hydrogen 

content of the formation. When hydrogen is associated 
with liquid-filled pore space, this ratio can be used to 
determine the classic NPHI porosity. The following is 
the ratio-to-porosity transform which is used for fraction 
porosity estimation: 

 

CPS
CPS

Far detector ( ) Ratio  
Near  detector ( )

= ………………..(7) 

 
Having the porosity ratio, the environmentally 
uncorrected apparent limestone porosity can be 
estimated using the special user function for the dual 
neutron probe as follows: 

 
TMP3  = (TMP2)2  …………………………………..(8) 
 

TMP4  = (TMP2)3……………...………..….………..(9) 

 

TMP5  = (0.1080258/ TMP4) -  (0.25482/ TMP3)  + 
(4.779079/ TMP2) -  9.517288   …………….…......(10) 
 

TMP6  = (0.1149102/ TMP4) -  (0.25482/ TMP3) + 
(4.85726/ TMP2) - 8.734154  ………………..….....(11) 
 

TMP7 =  (TMP5 - TMP6)  …...………………........(12)              
 

TMP8 = TMP6 – (TMP7 * B.S) ..…………….........(13)       
 

NPHI  = (TMP7 * TMP1) + TMP8  ……....…….....(14)      
 
where: 
NPHI    is the apparent limestone porosity,   
TMP1   is the caliper log readings (mm), 
TMP2   is the far/near ratio (CPS), 
TMP7 and TMP8 are the slope and intercept of the 
calibrated porosities at borehole diameters of 214 mm 
and 150 mm, respectively. 
 

The above mentioned statistical technique has the 
advantage of effectively compensating for the variations 
in borehole and formation salinity from one hand and 
minimizing the effects of changes in borehole size 
(caliper corrected) from the other hand. But still some 
difficulties and exaggerated errors in the final estimated 
apparent porosity due to the normal regression analysis 
used for solving the equations. 
 
2.2 Simulation Algorithm and Model Structure 

Monte Carlo simulation can be used for a variety 
of different petrophysical problems, which are not so 
easy to be treated by the traditional logging analyses. 
The procedure of Monte Carlo simulation depends on 
numerous probabilities for certain samples to 
approximate the solution of any mathematical or 
physical problem in a statistical way. The successful 
simulation model must be realistic representative of the 
subsurface geological feature (reservoir) to be studied. 
So the input of the simulation algorithm is a 
combination of stochastic correlated parameters and 
geological-based information controlled by certain 
constraints.  

 
To deal with the uncertainty, some rules are used 

in the reservoir simulation, the first are the 
petrophysical-related ones which governorate the whole 
simulation framework, while the others are stochastic 
realizations which can be re-evaluated and redrawn, 
until satisfactory result is achieved. The stochastic 
inputs are supplied in the form of probability density 
functions (pdf’s) variance-covariance and correlation 
coefficients matrices as determined from actual well 
logging data. 
 
Constraints 
        Before going on the simulation model, we have to 
define some constraints, which will guide and control 
the simulation procedure. There are two types of 



constraints, hard constraints and simulation constraints. 
The hard constraints, as used in this study, include 
number of probability density functions (pdf’s) for the 
different studied zones, in addition to rules which keep 
the main petrophysical characteristics of different zones 
(ρb - φN log responses in front of gas zones) and  finally 
certain topo-geological relationship between simulated 
wells in the area. At any stage of the simulation the 
stochastic variables are evaluated against the hard 
constraints. If any hard constraint is not satisfied, then 
the variables are redrawn again and so on. 
 
The simulation constraints, on the other hand, include 
petrophysical-related rules such as; shale and matrix 
parameters, lithology type, and the number of different 
zones (entities) used in the study and their relative 
thicknesses. 

 
Correlated Stochastic Variables 

In this study multiple geostatistical techniques are 
applied to generate correlated distributions of the 
reservoir rock parameters. For example, if we have three 
correlated logging parameters or variables (X1, X2 and 
X3), that satisfy the relation:   

 

1 2 2E X X x⎡ =⎣ ⎤⎦  is linear in x2 …………….….(15) 

1 3 3E X X x⎡ =⎣ ⎤⎦  is linear in x3 …………….….(16) 

 
Then it will be possible to get correlated stochastic 
variables of the logging data by constructing two types 
of matrices (correlation and variance-covariance). By 
definition, the forms of these two matrices can be 
written as follows: 

 
Correlation Matrix :  

 

        
11 12 13

21 22 23

31 32 33

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎜ ⎟
⎟

⎜ ⎟

⎜ ⎟
⎜ ⎟

⎛ ⎞

⎜
⎝ ⎠

…………….……………..(17) 

 
Variance-Covariance Matrix: 

 

      …………….……….…..(18)     
11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

⎛ ⎞

⎜ ⎟
⎝ ⎠

 
Where the correlation (ρ) and covariance (σ x1,x2  ) can 
be identified as follows: 
 

 Corr.  (ρ)  = σ x1,x2 / (σx1 * σx2 )  …………..….…...(19) 
 

Cov. (σ x1,x2) = E [(x1 – µx1) (x2 – µx2)]…….…..(20) 

Correlated Multivariate Variables 
The general form of the multivariate variables 

(MVN ) is: 
 

( ),X M V N µ σ∼ ……………….…….(21) 
 

So the conditional distribution of X1 which gives          
a realization  x2  of  X2  is MVN  with expectation: 

(
^

1
1 1 1 2 2 2 2 2x )µ µ σ σ µ−= + − ………….…….(22) 

^
1

1 1 1 1 1 2 2 2 2 1σ σ σ σ σ−= − ……………….…….(23) 
 

So, if we have 5 variables or logs, namely; ρb (x1), φN 
(x2), ∆T(x3), GR (x4) and Rt (x5), these variables can 
be correlated together in multivariate arrangement as 
follows: 
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Where      and      are stochastically derived  parameters 
of ∆T log (x3),  which  could   be  further  redrawn  
(simulated)  using  a  suitable Monte  Carlo  
distribution. 

 
APPLICATIONS 

The present simulation model is applied in two 
different areas (Fig. 1); in the offshore Nile Delta and 
Ras Fanar field; as an attempt to predict and enhance the 
estimation of the petrophysical parameters of the 
hydrocarbon-bearing  reservoirs in these areas.  
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Figure (1): Map showing the location of 

the study areas. 



In the offshore Nile Delta, the model is applied to 
improve and predict the petrophysical parameters of the 
gas-bearing reservoirs. While in Ras Fanar field, the 
simulation algorithm is used mainly to solve the cycle 
skipping problem concerning with sonic log which is 
common phenomenon in this field due to the acoustic 
properties of the Nullipore carbonate reservoir. 
 
CASE STUDY 1: OFF SHORE NILE DELTA 

The Northeastern offshore Nile Delta (Figs. 1 and 
7) is one of the promised areas for gas exploration in 
Egypt. The sedimentary succession of this area consists 
of interbedded clastics (sand and shale). Several gas 
discoveries have been made in this area since the mid of 
1993. Most of the gas-bearing sand anomalies are 
entrapped stratigraphically in sediments of Late 
Pliocene to Early Pleistocene in age. The main Plio-
Pleistocene hydrocarbon entrapment style in this area is 
related to the channelized meandering system in part 
and to the hanging wall rollover anticlinal closures of 
the listric faults in the other. 

 
PROBABILITY DENSITY FUNCTIONS 
(PDF’S) 

A number of probability density functions (pfd’s) 
are constructed for a number of wells in the area. The 
study sections (Pliocene gas-bearing formations) are 
classified in terms of shale content, into number of clean 
sand and shale entities or zones.  

 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then, different types of pfd’s are constructed for 
each of these zones separately. These functions are very 
important as it determine the type of the distribution and 
the best guess of the parameters which will be further 
used in simulating certain petrophysical property. 
Figure 2 shows an example of the constructed 
probability density functions (pfd’s) for the gas-bearing 
sand and shale zones in Darfeel-7 well. 

 
The figure gives best chance or highest 

probabilities of 0.56 and 0.71 with mid points of 45.30 
and 66.10 for the gamma ray log in the gas sand and 
shale zones, respectively. 

 
DISTRIBUTIONS FOR SHALE PARAMETERS 
DETERMINATION 

Finding the different parameters of the reservoir 
under study, including the shale parameters, is very 
important step before going in any analytical process. 
The good picking of these parameters, the more 
accurate will be the final interpretations. Since the gas-
bearing sand anomalies are embedded mainly in 
different shale sediments, and are encountered at 
different depth levels with different geological ages, this 
necessitates careful choosing of the different shale 
parameters, especially for the shale beds which have 
different environments of deposition. In traditional well 
logging analysis these parameters are usually selected 
using many qualitative and quantitative techniques with 
considerable error ratio. 

 
 
 

      (A)  Anomaly-2 gas zone (1720m-1811m)                               (B)  Shale zone (1475m-1550m) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (2): Gamma ray probability density functions (pdf’s) of the gas sand and shale zones, Darfeel-7 well.



Normal Distribution: In this study, and by using iteration of 100 times 
in front of each depth increment of the studied zones, 
shale parameters are picked through random 
distributions based on Monte Carlo simulation. Table 
(1) shows the different statistical parameters of the 
available logging data of two selected wells (Darfeel-1 
and Darfeel-2)  used as examples in the offshore Nile 
Delta area. These parameters will be utilized, with some 
limitations, as key inputs for any random distribution 
which will be used for acquiring the new simulated 
shale parameters. Very high variance and Std. Dev. 
values are recognized for the resistivity log in both 
wells due to the presence of a number of gas-bearing 
anomalies with much higher recorded resistivity, 
especially in Darfeel-1 well.   
 

Based on the probability density functions of the 
shale zones in the study area, the normal and lognormal 
distributions (Fig. 3) are found the most appropriate for 
running the simulation process. The general forms of 
these two distributions are as follows: 
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Lognormal Distribution: 
 

   
f (x ) =

1
x 2πb2

exp[ −
(Anx − a)2

2b2 ]
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Figure (3): Normal and lognormal distributions. 
 

Table (2) summarizes the different estimated and 
simulated shale parameters using Monte Carlo 
simulation for Darfeel-1and Darfeel-2 wells. 
 
 
 
 

Table (1):  The average, variance and standard deviation 
parameters of the main logs in Darfeel-1 and Darfeel-2 wells. 

D

D

Tab
 
 
 
 
 
 
 
 

Well Param. ∆T ρb φN Rt GR 
µ 134.67 2.110 35.75 9.00 65.00 
σ2 193.21 0.009 59.52 949.25 81.99 arfeel-1 

St.Dev. 13.90 0.098 7.71 30.81 9.05 
µ 132.68 2.150 41.21 4.02 61.00 
σ2 256.32 0.011 57.30 59.91 74.13 arfeel-2 

St.Dev. 16.01 0.082 7.57 7.74 8.61 

 
 
 
 
 

le (2): Shale parameters estimated by normal logging and simulation 
methods, Darfeel-1 and Darfeel-2 wells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Well Model Param. ∆Tsh ρbsh φNsh Rtsh GRmin GRmax 

Logging Logsh 138.04 2.132 40.02 0.92 42.12 72.13 
µ 139.82 2.141 41.9 0.89 40.36 75.94 
σ2 313.29 0.004 69.14 0.05 14.98 27.77 

St.Dev. 17.70 0.062 8.315 0.23 3.87 5.27 D
ar

fe
el

-1
 

Monte 
Carlo Sim. 

Logsh 140.53 2.122 42.46 0.96 39.93 75.29 
Logging Logsh 142.11 2.114 41.05 0.95 41.21 65.24 

µ 139.62 2.134 43.32 0.91 38.44 68.04 
σ2 25.20 0.002 14.29 0.07 7.40 14.82 

St.Dev. 5.02 0.048 3.78 0.26 2.72 3.85 D
ar

fe
el

-2
 

Monte 
Carlo Sim. 

Logsh  141.54 2.126 41.7 0.88 40.25 67.68 

 
 
 
 



IMPROVING THE PETROPHYSICAL 
PARAMETERS  

After preparing the probability density functions 
and choosing the suitable distribution for each 
petrophysical parameter, then logging data can be 
randomly iterated and another new stochastically 
derived parameters can be obtained. By making iteration 
of 100 times at each depth level for each petrophysical 
parameter to be deduced and by taking the best chance 
(most likely), then we will have much improved and 
stochastically new correlated petrophysical parameters. 
 

The above procedure can be used to improve the 
estimation of the petrophysical parameters from one 
hand and to minimize the error ratio in the final 
interpretations to large extent, from the other hand. 
Figure (4) shows an example of complete petrophysical 
analysis of Darfeel-1 well based on Monte Carlo 
simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (4): Petrophysical analysis of the Darfeel-1 
well based on Monte Carlo simulation. 

Three gas-bearing sand levels are well detected 
(anomalies 2, 2-A and 3) at different depth levels, 
associated with high apparent water resistivity. The 
petrophysical analysis of these levels show high 
effective porosity (> 25%), high gas saturation (>50%) 
and low shale volume. Table (3) exhibits the normalized 
values for the main petrophysical parameters of the 
detected gas-bearing anomalies using normal logging 
analyses and simulation method. An effective range of 
differences can be observed between the results of both 
methods. 
 

Table (3): Average petrophysical parameters of the 
gas-bearing anomalies in Darfeel-1 well. 

 

Method Zone Vsh Sw φeff 
Anomaly 2 0.12 0.20 0.30 

Anomaly 2-A 0.37 0.57 0.24 
Monte 
Carlo 
Sim. Anomaly 3 0.19 0.35 0.28 

Anomaly 2 0.18 0.28 0.25 
Anomaly 2-A 0.30 0.64 0.21 Normal 

Logging Anomaly 3 0.24 0.39 0.24 
 

Another application of the simulation technique, is 
to redraw some petrophysical parameters which are not 
commonly used in logging analyses due to the 
uncertainty associated in the final interpretations such 
as; some single and double porosity (Sonic, Neutron-
Sonic, Gamma-Sonic,…etc.) and shale volume 
indicators (Resistivity, Neutron,... etc.). In this respect, 
shale volume is used as example to demonstrate the 
expected petrophysical improvements and differences, 
which may arise upon applying the simulation 
technique. Nouras-1 well (Fig. 7) is selected for this 
purpose and shale volumes are estimated using gamma 
ray, neutron and resistivity logs. Usually gamma ray log 
is the best for this process; meanwhile neutron and 
resistivity logs, in most cases, give very bad 
interpretations. In this example, GR log is used as 
reference log, which means that this log is corrected and 
randomly iterated before being used by both methods. 
The following are the correlation and variance-
covariance matrices for shale volume estimated using 
these single log indicators: 
 

Correlation Matrix (Logging): 
 

 

               
1.00 0.621 0.419
0.621 1.00 0.225
0.419 0.225 1.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Variance-Covariance Matrix (Logging): 
 

 

               
0.1038 0.0374 0.0616
0.0374 0.0353 0.0192
0.0616 0.0192 0.2097

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

VshGR
 

VshNeut
 

VshRt

shR   VshGR  VshNeut  V t

VshGR
 

VshNeut
 

Vsh

     VshGR   VshNeut   VshRt
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One can easily note that, the correlation between the 
different shale volumes is not so good especially 
between neutron-resistivity logs (ρ =22%) and gamma 
ray-resistivity logs (ρ =41%). On the other hand, the 
correlation matrix for the different simulated shale 
volumes shows much better improvements. In general, 
very good correlation (ρ >72%) is recognized between 
the different simulated volumes.   
 

Correlation Matrix (MC Sim.): 
 
     

                 
1.00 0.801 0.724
0.801 1.00 0.863
0.724 0.863 1.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
Variance-Covariance Matrix (MC Sim.): 
 
 

              
0.1041 0.0595 0.0482
0.0595 0.0540 0.0413
0.0482 0.0413 0.0430

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Further more, the variance-covariance matrix of the 
simulated data exhibits very good range (0.0413-
0.1041), which is much correlated and closer than that 
provided by normal logging analyses (0.0192-0.02097). 
Table (4) shows an example of the statistical analysis of 
the different shale volumes of Nouras-1 well. While the 
average estimated shale volumes exhibit wide range 
(53% from GR log, to 68% from Rt log), the simulated 
data show close improved range in the order of 53% to 
60%.  
 

Table (4): Statistical analysis of different shale 
volumes, Nouras-1 well. VshGR 

 

    VshGR   VshNeut   VshRt

 

 

Figure (5) shows the shale volume analog for the 
different shale curves estimated by the logging (Track 
3) and simulation (Track 5) methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vsh
Method Param. µ σ2 St. 

Dev. 
Vsh GR 0.536 0.104 0.322 

Vsh Neut. 0.634 0.035 0.187 Normal 
Logging Vsh Rt 0.687 0.209 0.457 

Vsh GR 0.536 0.104 0.322 
Vsh Neut. 0.601 0.054 0.231 

Monte 
Carlo 
Sim. Vsh Rt 0.597 0.043 0.207 

Neut
 

VshRt

 

           Low       resistive
           sand    bed 

         High     resistive 
          shale      bed 

Figure (5): Shale volume analog of Nouras-1 well.
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Regarding track 3, very bad matching is observed 
between resistivity-derived shale volume and other 
shale volumes estimated from neutron and gamma ray 
logs allover the entire section of the well and between 
all of them especially in the upper and lower parts of the 
study section. This is urged to the presence of low 
resistive clean sand bed in the upper part of the section 
(1108m-1185m) which leads to high exaggerated shale 
volume as compared with other volumes derived from 
neutron and gamma ray logs. Another reason is the 
presence of high resistive shale bed in the lower part of 
the section (1940m-2045m), which could be interpreted 
by the resistivity log as clean bed with much reduced 
shale volume. Track 5 on the hand, shows the simulated 
shale volumes. The matching between the resistivity-
derived shale volume and other estimated shale volumes 
(neutron and gamma ray) is remarkably improved in the 
upper and lower parts of the study section and between 
all of them allover the entire section of the well, in 
general. 
 

To clarify the differences between the two 
methods in a more detailed statistical way, frequency 
and percent analyses are carried out upon the different 
concluded shale volumes. Figure (6) shows the 
frequency crossplots of both log-derived and simulated 
data. The circular selections exhibit the low and high 
resistive zones before and after simulation. Table (5), on 
the other hand, represents the percent statistical analysis 
of the different shale volumes. It shows that the St. 
Error of the simulated parameters decreases remarkably. 
Also, it appears clear that, although the normal logging 
methods ignoring the clean and shaly beds in case of 
neutron (42%-47%) and resistivity logs (41%-48%), 
much more reliable values are given by the simulated 
data; 16% to 38% and 27% to 42% for both logs, 
respectively. Furthermore, the low shale volume range 
(56%-73%) given by the normal logging method 
(resistivity log) in front of the high resistive shale bed is 
greatly treated after the simulation to a range of 65% to 
86%, which is relatively close to that given by gamma 
ray log (71% to 93%). 
 
PREDICTING THE PETROPHYSICAL 
PARAMETERS  

The for-mentioned simulation model can be used 
in predicting the missed sections of certain logs or even 
a complete run of logs in an area. It can be also used for 
predicating the petrophysical parameters of a proposed 
exploratory well providing that a satisfactory 
topological/geological neighbourhood constraint (hard 
constraint) is completely well developed in the study 
area.  
 
Constraints for Simulating New Well  
 A number of rules and constraints must be 
satisfied first before going to simulate new imaginary 

well in a certain area. The most important of these are; 
1) the well must be drilled in area with topological 
connected sets, 2) good correlated petrophysical 
parameters between wells in the same connected set and 
the other set in which a new well will be simulated, 3) 
the connected sets must attain the same structure 
elements and, 4) the presence of the same lithological 
units (entities) as interpreted from seismic sections.  
 
The Topological Connected Sets (Connected 
Space) 

To simulate the petrophysical parameters of a new 
well in certain area, we have to make sure that the set 
(area) of the new well is topologically connected with 
the other surrounding sets (areas), where many wells are 
already drilled and their petrophysical parameters are 
interpreted and well known. So we have to define the 
topological space and to find the relationships between 
the different sets in the study area based on 
topological/geological rules. 
 
Topological Space (X, τ) 

If we suppose that the study area is the big 
universe set X which consists of many small sets Di, Dj, 
Dk,….,Dn (Fig. 7). Then we have to check for an 
equivalence relationship (ρ) between the subsets to 
construct the topology in X. In this respect we have 
three properties of ρ: 
 
Reflexive: when Di ρ Di for all i = 1,2,3,….…….,n;           
 

Symmetric: when  Di ρ Dj  ⇒ Dj ρ Di  
for all i = 1,2,3,………...,n;        
 

Transitive: when  Di ρ Dj   &  Dj  ρ Dk   ⇒  Di ρ Dk  
for all i = 1,2,3,………...,n;                
 

The above properties between Di’s and Dj’s sets 
are achieved in case if the data of each set is reflexive to 
its self (normal), or symmetrical if the same results can 
be obtained from the relation between two sets (Di ρ Dj) 
by exchanging their positions (Dj ρ Di) and finally 
transitive if we have three sets and the relation between 
the first and the second (Di ρ Dj) and the relation 
between the second and the third (Di ρ Dk) can lead to 
the relation between the first and the third (Di ρ Dk).  
 

After having the equivalence relationship between 
the subsets of X, then we have to construct the partitions 
of X as follows: 
 
[Di] =  { Dj I Di ρ Dj} The cosets form the partition for 
X , where:    
 

[ ] [ ] [ ]
1

for all i j
n

i

Di X and Di Dj φ
=

= = ≠∪ ∩  

 

These cosets construct a base for topology τ. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Figure (6): Frequency analysis of the log estimated and the simulated 
shale volumes, Nouras-1 well. 
 

 
 

Table (5): Percent statistical analysis of the different shale volumes estimated using
normal logging and Monte Carlo simulation, Nouras-1 well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (7): Off shore Nile Delta well base map 
showing the seismic lines, the topological sets and 

location of the new well. 
 

We have simulated many imaginary exploratory wells 
in the study area and we found that the best well to be 
drilled will be in a certain Dj set (area) according to a 
geological equivalence relation which can be 
constructed between this set and other sets (areas), for 
which the equivalence universal can be separated or 
partitioned into several areas compatible in every thing 
according to their petrophysical parameters (Fig. 7). We 
found that a good topological constraint (reflexive, 
symmetric and transitive relationships) is satisfied 
between the parameters of this area and the 
neighbouring Di area.  Furthermore, the geological 
constraint is checked to choose the best location for the 
new exploratory well to be simulated (Fig. 8).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

       Figure (8): NW-SE seismic section (line 1235)    
       showing the position of the new simulated well. 

From lateral seismic interpretations, we have to 
make sure that the section to be simulated contains the 
same lithological entities for which the stochastic 
correlated parameters are already known. The new well 
(Dx) is chosen at the intersection of seismic lines 1235 
and 2300 at shot points 2380 and 1265 for both lines, 
respectively. The expected two way time at the top of 
the gas-bearing anomaly in this well is 1.74 sec with 
TVD depth of -1265m. The petrophysical parameters of 
the well are simulated using the available datasets of the 
other wells in the Di set (Darfeel-1, Derfeel-2, Darfeel-
7, ..etc), which have similar neighbourhood/geological 
characters. The following is an example of the different 
correlation matrices, which can be produced for a 
certain petrophysical property (effective porosity) of the 
new well by the simulation process:   
 

 

                   
1.00 0.95 0.92
0.95 1.00 0.90
0.92 0.90 1.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 φeff Darf1 
 φeff Darf2   
 φeff Dx

   φeff Darf1 φeff Darf2 φeff Dx

 
Good correlation is observed between the 

predicted porosity of the new well (Dx) and the 
simulated porosities of the other wells. The other 
different petrophysical parameters (Vsh, Sw, ..etc) are 
also simulated using the same procedure. Table (6) 
summarizes the average simulated petrophysical 
parameters of the gas-bearing anomaly-2 of the new 
well, relative to other wells in the study area. 

 
Table (6): Average simulated petrophysical 

parameters of the gas anomaly-2 in Di and Dj sets. 
 

Well Zone Vsh Sw φeff 
Darfeel- 1 Anomaly 2 0.12 0.20 0.30 
Darfeel- 2 Anomaly 2 0.17 0.35 0.25 

Dx Anomaly 2 0.21 0.46 0.27 
 
 

CASE STUDY 2: RAS FANAR FIELD 
 

Ras Fanar area is located in the central part of the 
western margin of the Gulf of Suez about 3.5 km east of 
Ras Gharib shoreline (Fig. 9). The field produces 
mainly from the Middle Miocene Nullipore carbonate 
section which is deposited under shallow marine warm 
water conditions and is considered to be equivalent to 
the Hammam Faraun Member of the Belayim 
Formation. 

 
Some problems concerning with the quality of the 

sonic logging data are clearly noticed in this field due to 
the acoustic properties of the shallow carbonate section. 
Nullipore carbonate reservoir in Ras Fanar field is 
acoustically very soft especially in front of the more 
porous intervals (∆T of +/- 190 µs/ft). This leads to low 
amplitude sonic signals and hence causes cycle skipping 
problems in a number of sonic logs (Fig. 10).  



 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (9): Well location map of Ras Fanar field. 

 
Additionally, because the Nullipore is not well 
compacted (depth +/- 2000 to 3000 ftss) the usefulness 
of the sonic log in logging and seismic interpretations is 
greatly limited. With the exception of the sonic tool, 
almost the quality of other logs is generally good 
reflecting the borehole conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (10): Cycle skipping of RF B2 well,  
Ras Fanar field. 

To overcome cycle skipping problem and to make 
optimum use of the sonic log, a Monte Carlo-based 
simulation data are derived for sonic logs in wells where 
the problem exist in correlation with the other sonic data 
of good quality from surrounding wells. In this case 
study, RF B2 well is used to demonstrate how the 
simulation procedure could be used to enhance and 
improve the acoustic properties of the Nullipore 
carbonates. Figure (11) shows the probability density 
function of the sonic log for the carbonate section in RF 
B2 well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure (11): Probability density function of sonic log 
in RF B2 well, Ras Fanar field. 

 
It appears clear that the highest probability (best chance) 
for the sonic log is 0.04 with mid point of 158.9 Further 
more the shape of the density function assigns 
lognormal distribution for the simulation technique. 
 
A Monte Carlo simulation model is applied using the 
parameters concluded form the probability density 
function and its distribution. Correlated stochastic 
parameters are constructed using the same procedure 
followed in the first case study. Much more 
improvements are achieved for the sonic log especially 
in front of the zone (2635ft-2790ft), which is greatly 
influenced by the cycle skipping (Fig. 12). To illustrate 
such enhancements, a comparison is made between the 
correlation matrices of the used sonic data before and 
after the simulation as follows: 
 



 
Correlation Matrix (Logging): 
 

 

                
 

∆TRF B2 
 

1.00 0.91 0.65 0.92
0.91 1.00 0.87 0.95
0.65 0.87 1.00 0.72
0.92 0.95 0.72 1.00

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

 

Correlation Matrix (MC Sim.): 
 

 

                
 

∆TRF B2 
 

1.00 0.95 0.87 0.94
0.95 1.00 0.91 0.98
0.87 0.91 1.00 0.92
0.94 0.98 0.92 1.00

⎛
⎜
⎜
⎜
⎝

 
The correlation matrix of the simulated parameters 
shows that sonic log data became much correlated with 
other logs from the surrounding wells, especially 
between RF B2 well and both of RF B3 and KK 84-1 
wells, where the correlation increases by percent more 
than 20%. Figure (12) exhibits the sonic log data of RF 
B2 before and after simulation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (12): Sonic log data of RF B2 well 
 before and after simulation. 

SUMMARY AND CONCLUSIONS 

In this study both Monte Carlo and stochastic 
analyses are used as powerful tools for analyzing the 
petrophysical parameters of the reservoirs in two 
different areas (offshore Nile Delta and Ras Fanar 
field). The purpose of these analyses is mainly to 
improve the estimation of the petrophysical parameters 
from one hand and to predict the petrophysical 
parameters of missed sections in old fields or even in 
new exploratory areas, from the other hand. 

   ∆TRF B3 ∆TRF B8 ∆TRF B2 ∆TKK 84-1

∆TRF B3 
 

∆TRF B8 

∆TKK 84-1

 
  ∆TRF B3 ∆TRF B8 ∆TRF B2 ∆TKK 84-1 Two types of constraints are defined before going 

on the simulation model. The first are hard constraints 
based on number of probability density functions (pdf’s) 
for the different zones, fixed petrophysical-based rules 
and known topological/geological relationship between 
the simulated wells. The second are the simulation 
constraints, which are matter of change and deal mainly 
with some stochastic realizations of the petrophysical 
parameters. Different types of statistical distributions 
and correlated multivariate variables were used in the 
simulation, depending on the petrophysical property to 
be estimated. Also, a number of correlation and 
variance-covariance matrices are constructed for the 
different logging data. The algorithm begins with 
simulating correlated stochastic variables one by one by 
running a 100 times iteration in front of each depth 
increment. By using rules based on the petrophysical 
information and by taking the best chance (most likely), 
much improved and new stochastically correlated 
petrophysical parameters, will arise. 

∆TRF B3 
 

∆TRF B8 

∆TKK 84-1

 
The simulation model is used to improve the 

estimation of the petrophysical parameters of reservoirs, 
which are usually deduced by normal logging 
techniques. Due to the importance of shale parameters 
in the evaluation of the gas-bearing reservoirs in the 
clastic offshore succession of the Nile Delta, these 
parameters are chosen carefully using distributions 
based on Monte Carlo simulation. 
 

Some petrophysical parameters which are not 
commonly used in logging interpretation due to the 
uncertainty (shale volume indicators) are redrawn using 
the simulation model. The simulated Vsh values are 
found more correlated and the errors in the 
interpretation which may arise by using normal logging 
techniques due to certain rock physical properties (low 
resistive sand and high resistive shale beds), are 
effectively reduced. Percent and frequency analyses are 
also used to compare between the results of both 
methods. The other important petrophysical parameters, 
which are necessary for evaluating the studied 
reservoirs, are all simulated and estimated using suitable 
Monte Carlo distributions. 
 



Furthermore, the model is used to predicate the 
petrophysical parameters of a new proposed well (Dx) 
in the offshore Nile Delta. To do that, the main area (X) 
is subdivided topologically into small areas (sets) Di, 
Dj, Dk,….,Dn and a hard topological/geological 
neighbourhood constraint is examined first. An 
equivalence relationship (ρ) between the subsets is 
studied to find the topological properties (reflexive, 
symmetric and transitive) of the different sets based on 
geological/petrophysical rules. The different 
petrophysical parameters of the new well (φ, Vsh, Sw, 
..etc) are all simulated and predicted. 

 
 In Ras Fanar field, on the other hand, the model is 

used to solve the cycle skipping problem concerning 
with sonic log, which is a common phenomenon in this 
field due to the acoustic properties of the carbonate 
Nullipore reservoir. The quality of the simulated sonic 
data are greatly improved and show much more 
correlation with other sonic data of good quality 
(ρ>87%). 
 

The interpretations and results obtained form the 
simulation model are proved to be more accurate and 
representative for the petrophysical properties of the 
studied reservoirs than that obtained form normal 
logging analyses. So, this simulation model has a wide 
range of applicability and can be either used to improve 
the estimation of the petrophysical parameters of the 
reservoirs and/or to make optimum use of the available 
data in old fields or even in to predict the petrophysical 
parameters of  wells in new exploratory areas. 
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